Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 15(3)2023 03 18.
Article in English | MEDLINE | ID: covidwho-2283019

ABSTRACT

Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.


Subject(s)
Autoimmune Diseases , COVID-19 , Virus Diseases , Humans , COVID-19/complications , Autoimmune Diseases/epidemiology , Autoimmune Diseases/genetics , Virus Diseases/complications , Virus Diseases/epidemiology , Autoimmunity , Autoantigens
2.
Pathophysiology ; 29(2): 243-280, 2022 Jun 03.
Article in English | MEDLINE | ID: covidwho-1884302

ABSTRACT

In our continuing examination of the role of exposomes in autoimmune disease, we use this review to focus on pathogens. Infections are major contributors to the pathophysiology of autoimmune diseases through various mechanisms, foremost being molecular mimicry, when the structural similarity between the pathogen and a human tissue antigen leads to autoimmune reactivity and even autoimmune disease. The three best examples of this are oral pathogens, SARS-CoV-2, and the herpesviruses. Oral pathogens reach the gut, disturb the microbiota, increase gut permeability, cause local inflammation, and generate autoantigens, leading to systemic inflammation, multiple autoimmune reactivities, and systemic autoimmunity. The COVID-19 pandemic put the spotlight on SARS-CoV-2, which has been called "the autoimmune virus." We explore in detail the evidence supporting this. We also describe how viruses, in particular herpesviruses, have a role in the induction of many different autoimmune diseases, detailing the various mechanisms involved. Lastly, we discuss the microbiome and the beneficial microbiota that populate it. We look at the role of the gut microbiome in autoimmune disorders, because of its role in regulating the immune system. Dysbiosis of the microbiota in the gut microbiome can lead to multiple autoimmune disorders. We conclude that understanding the precise roles and relationships shared by all these factors that comprise the exposome and identifying early events and root causes of these disorders can help us to develop more targeted therapeutic protocols for the management of this worldwide epidemic of autoimmunity.

3.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: covidwho-1713564

ABSTRACT

The development of autoimmune diseases following SARS-CoV-2 infection, including multisystem inflammatory syndrome, has been reported, and several mechanisms have been suggested, including molecular mimicry. We developed a scalable, comparative immunoinformatics pipeline called cross-reactive-epitope-search-using-structural-properties-of-proteins (CRESSP) to identify cross-reactive epitopes between a collection of SARS-CoV-2 proteomes and the human proteome using the structural properties of the proteins. Overall, by searching 4 911 245 proteins from 196 352 SARS-CoV-2 genomes, we identified 133 and 648 human proteins harboring potential cross-reactive B-cell and CD8+ T-cell epitopes, respectively. To demonstrate the robustness of our pipeline, we predicted the cross-reactive epitopes of coronavirus spike proteins, which were recognized by known cross-neutralizing antibodies. Using single-cell expression data, we identified PARP14 as a potential target of intermolecular epitope spreading between the virus and human proteins. Finally, we developed a web application (https://ahs2202.github.io/3M/) to interactively visualize our results. We also made our pipeline available as an open-source CRESSP package (https://pypi.org/project/cressp/), which can analyze any two proteomes of interest to identify potentially cross-reactive epitopes between the proteomes. Overall, our immunoinformatic resources provide a foundation for the investigation of molecular mimicry in the pathogenesis of autoimmune and chronic inflammatory diseases following COVID-19.


Subject(s)
Computational Biology/methods , Epitopes/chemistry , Epitopes/immunology , SARS-CoV-2/immunology , Software , Viral Proteins/chemistry , Viral Proteins/immunology , Algorithms , Cross Reactions/immunology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/immunology , Models, Molecular , Molecular Mimicry , Neural Networks, Computer , Proteome , Proteomics/methods , Structure-Activity Relationship , Web Browser
4.
Adv Exp Med Biol ; 1318: 149-167, 2021.
Article in English | MEDLINE | ID: covidwho-1222712

ABSTRACT

Virus and host innate immune system interaction plays a significant role in forming the outcome of viral diseases. Host innate immunity initially recognizes the viral invasion and induces a rapid inflammatory response, and this recognition activates signaling cascades that trigger the release of antiviral mediators. This chapter aims to explore the mechanisms by which newly emerged coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activates the host immune system. Since SARS-CoV-2 shares similarities with SARS-CoV that caused the epidemic of SARS in 2003, the pathogenesis of both viruses could be at least very similar. For this, this chapter provides a synthesis of literature concerning antiviral immunity in SARS-CoV and SARS-CoV-2. It includes the presentation of epitopes linked to SARS-CoV-2 as well as the ability of SARS-CoV-2 to cause proteolytic activation and interact with angiotensin-converting enzyme 2 (ACE2) via molecular mimicry. This chapter characterizes various mechanisms that this virus may engage in escaping the host immunity, ended by a discussion of humoral immune responses against SARS-CoV-2.


Subject(s)
COVID-19 , Epidemics , Antiviral Agents/therapeutic use , Humans , Immunity, Innate , Peptidyl-Dipeptidase A , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL